#include <fstream>
#include <algorithm>

using namespace std;

ifstream fin("ferma.in");
ofstream fout("ferma.out");

const int Dx[] = {-1, 0, 0, 1};
const int Dy[] = {0, -1, 1, 0};

char A[405][405], snul[11], solc;
int N, M, q;
int maxim, solx, soly;
int nr, marime;
int B[405][405];

struct zone
{
    char cul;
    int mar;
};
zone V[160800];

void fill(int i, int j)
{
    ++marime;
    B[i][j] = nr;

    for (int k = 0; k < 4; ++k)
    {
        int ii = i + Dx[k];
        int jj = j + Dy[k];

        if ((ii > N || ii < 1) || (jj > M || jj < 1))
            continue;

        if (A[ii][jj] == A[i][j] && !B[ii][jj])
            fill(ii, jj);
    }
}

void check(int i, int j)
{
    if (V[B[i - 1][j]].cul == V[B[i + 1][j]].cul && (V[B[i - 1][j]].mar + V[B[i + 1][j]].mar > maxim) && V[B[i][j]].cul != V[B[i - 1][j]].cul)
    {
        solx = i;
        soly = j;
        solc = V[B[i - 1][j]].cul;
        maxim = V[B[i - 1][j]].mar + V[B[i + 1][j]].mar;
    }
    if (V[B[i][j + 1]].cul == V[B[i][j - 1]].cul && (V[B[i][j + 1]].mar + V[B[i][j - 1]].mar > maxim) && V[B[i][j]].cul != V[B[i][j + 1]].cul)
    {
        solx = i;
        soly = j;
        solc = V[B[i][j + 1]].cul;
        maxim = V[B[i][j + 1]].mar + V[B[i][j - 1]].mar;
    }
}

int main()
{
    fin >> q;
    fin >> N >> M;
    fin.getline(snul, 11);
    for (int i = 1; i <= N; ++i)
        fin.getline(A[i] + 1, M + 5);

    for (int i = 1; i <= N; ++i)
        for (int j = 1; j <= M; ++j)
            if (!B[i][j])
            {
                ++nr;
                marime = 0;
                fill(i, j);
                V[nr].cul = A[i][j];
                V[nr].mar = marime;
            }

    maxim = 0;
    if (q == 1)
    {
        for (int i = 1; i <= nr; ++i)
            maxim = max(maxim, V[i].mar);
        fout << maxim << '\n';
    }
    else
    {
        for (int i = 2; i <= N - 1; ++i)
            for (int j = 2; j <= M - 1; ++j)
            {
                check(i, j);
            }

        fout << solx << ' ' << soly << '\n';
        fout << solc << '\n';
    }

    return 0;
}