3 4
. Being a talented mathematician too, megeve instantly realised that the warning message was just an abbreviation for the 4th P3 number. If you don't already know, megeve defines a Pk number to be a number made out of multiple copies (at least one) of 10(2)k (which means 1 followed by exactly k zero digits; for example, if k = 2, then the first 3 P2 numbers are, in this order: 100(2), 100100(2) and 100100100(2)). Please note that all Pk numbers provided above are in base 2 form.
After megeve got rid of that warning, he ran the code again and it printed T more warnings (due to the some changes in the code). Now not even megeve can fix them.
Since he is also curently working on three other important programs, he needs you to write him a program which reads two numbers T and K and N more numbers a[i], and returns the base 10 form of the a[i]-th Pk number for each i. Since the answers might be too large for standard integer types, megeve only needs the remainder when dividing the answer by 666013.
Input
The first line of the input contains two (one space separated) numbers T and K (in this order). The next T lines contain a[1], a[2], ..., a[T].Output
The output should consist of T lines, every of which should contain the answer to megeve's problem for the a[i] coresponding from the coresponding line , modulo 666013.Constraints
1 ≤ K ≤ 102
1 ≤ T ≤ 105
1 ≤ a[i] ≤ 101000000
All these numbers are in base 10. The size of the input file is less than 50MB.
Sample
Input | Output | Explanation |
---|---|---|
1 2 3 | 292 | The 3rd P2 number is 100100100(2) = 292(10) |
Matrici
RecurentaX[i] = 2 (102), i == 1
sau (X[i-1] * 2k+1 + 2k) % 666013
se poate transpune in inmultiri de matrici | 2k+1 1 0 | | Xk | | Xk+1| | 0 1 0 | x | 2k | = | 2k | | 0 0 1 | | 1 | | 1 |
Matematica
Se observa ca elementullX[i]
este suma termenilor unei progresii geometrice cu ratia 2k+1
, se aplica formula pentru suma de termeni de progresie geometrica. Sum = b*(qn-1)/(q-1)
. Deoarece raspunsul trebuie afisat modulo 666013 vom folosi invers modular pentru impartire. Solutia Smen
Se identifica ciclurile si se preproceseaza Din cauza ca de laX[i]
mergem la X[i] * 2k+1 + 2k
se formeaza cicluri pe baza resturilor De exemplu pentru k = 1
se formeaza ciclu la i = 333006
de la valoarea 0, pentru k = 3
la i = 166503
, pentru k = 13
tot la i = 333006
cu valoarea 0.
Acum ca sa calculam restul celui de al i-lea nr din X trebuie doar sa calculam restul lui i la perioada si sa afisam restul pentru acel numar.